Fourier synthesis via partially finite convex programming

نویسندگان

  • Pierre Maréchal
  • Daphné Wallach
چکیده

A dual algorithm for problems of Fourier Synthesis is proposed. Partially finite convex programming provides tools for a formulation which enables to elude static pixelization of the object to be reconstructed. This leads to a regularized reconstruction-interpolation formula for problems in which finitely many and possibly irregularly spaced samples of the Fourier transform of the unknown object are known, as is the case in Magnetic Resonance Imaging with non-Cartesian and sparse acquisitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projection: A Unified Approach to Semi-Infinite Linear Programs and Duality in Convex Programming

Fourier-Motzkin elimination is a projection algorithm for solving finite linear programs. Weextend Fourier-Motzkin elimination to semi-infinite linear programs which are linear programswith finitely many variables and infinitely many constraints. Applying projection leads to newcharacterizations of important properties for primal-dual pairs of semi-infinite programs suchas zero ...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Convex Optimization of Nonlinear State Feedback Controllers for Discrete-time Polynomial Systems via Occupation Measures

In this paper, we design nonlinear state feedback controllers for discrete-time polynomial dynamical systems via the occupation measure approach. We propose the discretetime controlled Liouville equation, and use it to formulate the controller synthesis problem as an infinite-dimensional linear programming (LP) problem on measures. The LP is then approximated by a family of finite-dimensional s...

متن کامل

Probability Distributions of Assets Inferred from Option Prices via the Principle of Maximum Entropy

This article revisits the maximum entropy algorithm in the context of recovering the probability distribution of an asset from the prices of finitely many associated European call options via partially finite convex programming. We are able to provide an effective characterization of the constraint qualification under which the problem reduces to optimizing an explicit function in finitely many...

متن کامل

Partially finite convex programming, Part II: Explicit lattice models

In Part I of this work we derived a duality theorem for partially finite convex programs, problems for which the standard Slater condition fails almost invariably. Our result depended on a constraint qualification involving the notion of quasi relative interior. The derivation of the primal solution from a dual solution depended on the differentiability of the dual objective function: the diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2009